

Welcome to epftoolbox’s documentation!

This is the documentation of the epftoolbox, the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a set of tools that ensure reproducibility and establish research standards in electricity price forecasting research.

The library contrain three main components:

	The data management subpackage, which comprises a module for processing data and another module for dataset extraction.

	The models subpackage, which provides two state of the art forecasting models for electricity price forecasting. The contains a module for the LEAR model and another module for the DNN model.

	The evaluation subpackage, which includes a module for evaluating the performance of the models in terms of accuracy metrics, and another module to compare the forecasts of the models via statistical testing.

The library is distributed under the AGPL-3.0 License [https://github.com/jeslago/epftoolbox/blob/master/LICENSE.txt] and it is built on top of scikit-learn, tensorflow, keras, hyperopt, statsmodels, numpy, and pandas.

Using the index on the navigation bar or the index below you can navigate through the different library components.

	Getting started

	Data management

	Forecasting models

	Model evaluation

	Examples

	Citation

Getting started

Installation

The library can be easily installed using pip. First clone the library and navigate to the folder:

git clone https://github.com/jeslago/epftoolbox.git
cd epftoolbox

Then, simply install the library using pip:

pip install .

Functionality

The library has three distinct modules: the data management module, the models module, and the evaluation module.

The first module provides functionality to manage, process, and obtain data for electricity price forecasting. The module also provides access to data from five different day-ahead electricity markets: EPEX-BE, EPEX-FR, EPEX-DE, NordPool, and PJM markets.

The second module grants access to state-of-the-art forecasting methods for day-ahead electricity prices that require no expert knowledge and can be automatically employed. At the moment, the library includes two state-of-the-art models: the LEAR model and the DNN model.

The third module provides with an easy-to-use interface for evaluating forecasts in electricity price forecasting. This module includes both scalar metrics like MAE or MASE as well as statistical tests to evaluate the statistical difference in forecasting performance.

Using the library

To learn how to use the library, there are three possibilities:

	Since the library is rather simply, an user can easily read the library documentation of the specific modules that are of interest. The documentation includes explanations of each module and how to use them.

	As an alternative, there are a number of examples that illustrate the most relevant functionalities of the library.

	Finally, the library and its functionalities are explained in detail in the following article:

	Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. “Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark”. Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

For the most comprehensive introduction to the library, the user should first read the article, then the documentation, and finally go through the available examples.

Data management

This subpackage provides an interface to extract data from different day-ahead electricity markets and a module to process the market data before its use in prediction models.

The first functionality is provided by the data extraction module, which provides automatic access to the data from five different day-ahead electricity markets as well as an easy-to-use interface to read data from other markets.

The second functionality is provided by the data wrangling module, which includes the most common scaling transformations in electricity price forecasting.

	Dataset extraction

	Data wrangling

Dataset extraction

This module provides an easy-to-use interface to download data from multiple day-ahead electricity markets using the following database [https://sandbox.zenodo.org/record/632147]. The module is built around the function read_data, and it can be used to obtain the market data from the following periods and day-ahead electricity markets:

	Market

	Period

	Nord pool

	01.01.2013 – 24.12.2018

	PJM

	01.01.2013 – 24.12.2018

	EPEX-France

	09.01.2011 – 31.12.2016

	EPEX-Belgium

	09.01.2011 – 31.12.2016

	EPEX-Germany

	09.01.2012 – 31.12.2017

Besides the data from these five markets, the module also provides an interface to read csv files from other markets and transform their data to match the naming requirements of the prediction models in the epftoolbox library. In addition, it also implements an automatic training/testing split based on the testing period under study.

	
epftoolbox.data.read_data(path, dataset='PJM', years_test=2, begin_test_date=None, end_test_date=None)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_datasets.py#L13]

	Function to read and import data from day-ahead electricity markets.

It receives a dataset name, and the path of the folder where datasets are saved.
It reads the file dataset.csv in the path directory and provides a split between training and
testing dataset based on the test dates provided.

It also names the columns of the training and testing dataset to match the requirements of the
prediction models of the library. Namely, assuming that there are N exogenous inputs,
the columns of the resulting training and testing dataframes are named
['Price', 'Exogenous 1', 'Exogenous 2',, 'Exogenous N'].

If dataset is either "PJM", "NP", "BE", "FR", or "DE",
the function checks whether dataset.csv exists in path. If it doesn’t exist,
it downloads the data from an online database and saves it under the path directory. "PJM"
refes to the Pennsylvania-New Jersey-Maryland market, "NP" to the Nord Pool market,
and "BE", "FR", and "DE" respectively to the EPEX-Belgium, EPEX-France, and EPEX-Germany
day-ahead markets.

Note that the data available online for these five markets is limited to certain periods (see the
database [https://sandbox.zenodo.org/record/632147] for further details).

	Parameters

	
	path (str, optional) – Path where the datasets are stored or, if they do not exist yet, the path where the datasets
are to be stored

	nlayers (int, optional) – Number of hidden layers in the neural network

	dataset (str, optional) – Name of the dataset/market under study. If it is one one of the standard markets,
i.e. "PJM", "NP", "BE", "FR", or "DE", the dataset is automatically downloaded. If the name
is different, a dataset with a csv format should be place in the path.

	years_test (int, optional) – Number of years (a year is 364 days) in the test dataset. It is only used if
the arguments begin_test_date and end_test_date are not provided.

	begin_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
end_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. begin_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

	end_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
begin_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. end_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

	Returns

	Training dataset, testing dataset

	Return type

	pandas.DataFrame, pandas.DataFrame

Example

>>> from epftoolbox.data import read_data
>>> df_train, df_test = read_data(path='.', dataset='PJM', begin_test_date='01-01-2016',
... end_test_date='01-02-2016')
Test datasets: 2016-01-01 00:00:00 - 2016-02-01 23:00:00
>>> df_train.tail()
 Price Exogenous 1 Exogenous 2
Date
2015-12-31 19:00:00 29.513832 100700.0 13015.0
2015-12-31 20:00:00 28.440134 99832.0 12858.0
2015-12-31 21:00:00 26.701700 97033.0 12626.0
2015-12-31 22:00:00 23.262253 92022.0 12176.0
2015-12-31 23:00:00 22.262431 86295.0 11434.0
>>> df_test.head()
 Price Exogenous 1 Exogenous 2
Date
2016-01-01 00:00:00 20.341321 76840.0 10406.0
2016-01-01 01:00:00 19.462741 74819.0 10075.0
2016-01-01 02:00:00 17.172706 73182.0 9795.0
2016-01-01 03:00:00 16.963876 72300.0 9632.0
2016-01-01 04:00:00 17.403722 72535.0 9566.0
>>> df_test.tail()
 Price Exogenous 1 Exogenous 2
Date
2016-02-01 19:00:00 28.056729 99400.0 12680.0
2016-02-01 20:00:00 26.916456 97553.0 12495.0
2016-02-01 21:00:00 24.041505 93983.0 12267.0
2016-02-01 22:00:00 22.044896 88535.0 11747.0
2016-02-01 23:00:00 20.593339 82900.0 10974.0

Data wrangling

This module is intended for transforming data into a format that can be read and processed by the prediction models of the epftoolbox library. At the moment, the module is limited to scaling operations.

The module is composed of two components:

	The DataScaler class.

	The scaling function.

The class DataScaler is the main block for performing scaling operations. The class is based on the syntax of the scalers defined in the sklearn.preprocessing [https://scikit-learn.org/stable/modules/preprocessing.html] module of the scikit-learn library. The class performs some of the standard scaling algorithms in the context of electricity price forecasting:

Besides the class, the module also provides a function scaling to scale
a list of datasets but estimating the scaler using only one of the datasets. This function is useful when
scaling the training, validation, and test dataset. In this scenario, to have a realistic evaluation, one would ideally estimate the scaler using the training dataset and simply transform the other two.

	
class epftoolbox.data.DataScaler(normalize)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_wrangling.py#L101]

	Class to perform data scaling operations

The scaling technique is defined by the normalize parameter which takes one of the
following values:

	'Norm' for normalizing the data to the interval [0, 1].

	'Norm1' for normalizing the data to the interval [-1, 1].

	'Std' for standarizing the data to follow a normal distribution.

	'Median' for normalizing the data based on the median as defined in as defined in here [https://doi.org/10.1109/TPWRS.2017.2734563].

	'Invariant' for scaling the data based on the asinh transformation (a variance stabilizing transformations) as defined in here [https://doi.org/10.1109/TPWRS.2017.2734563].

This class follows the same syntax of the scalers defined in the
sklearn.preprocessing [https://scikit-learn.org/stable/modules/preprocessing.html] module of the
scikit-learn library

	Parameters

	normalize (str) – Type of scaling to be performed. Possible values are 'Norm', 'Norm1', 'Std',
'Median', or 'Invariant'

Example

>>> from epftoolbox.data import read_data
>>> from epftoolbox.data import DataScaler
>>> df_train, df_test = read_data(path='.', dataset='PJM', begin_test_date='01-01-2016', end_test_date='01-02-2016')
Test datasets: 2016-01-01 00:00:00 - 2016-02-01 23:00:00
>>> df_train.tail()
 Price Exogenous 1 Exogenous 2
Date
2015-12-31 19:00:00 29.513832 100700.0 13015.0
2015-12-31 20:00:00 28.440134 99832.0 12858.0
2015-12-31 21:00:00 26.701700 97033.0 12626.0
2015-12-31 22:00:00 23.262253 92022.0 12176.0
2015-12-31 23:00:00 22.262431 86295.0 11434.0
>>> df_test.head()
 Price Exogenous 1 Exogenous 2
Date
2016-01-01 00:00:00 20.341321 76840.0 10406.0
2016-01-01 01:00:00 19.462741 74819.0 10075.0
2016-01-01 02:00:00 17.172706 73182.0 9795.0
2016-01-01 03:00:00 16.963876 72300.0 9632.0
2016-01-01 04:00:00 17.403722 72535.0 9566.0
>>> Xtrain = df_train.values
>>> Xtest = df_train.values
>>> scaler = DataScaler('Norm')
>>> Xtrain_scaled = scaler.fit_transform(Xtrain)
>>> Xtest_scaled = scaler.transform(Xtest)
>>> Xtrain_inverse = scaler.inverse_transform(Xtrain_scaled)
>>> Xtest_inverse = scaler.inverse_transform(Xtest_scaled)
>>> Xtrain[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])
>>> Xtrain_scaled[:3,:]
array([[0.03833877, 0.2736787 , 0.28415155],
 [0.03608228, 0.24425597, 0.24633138],
 [0.03438982, 0.23016409, 0.2261206]])
>>> Xtrain_inverse[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])
>>> Xtest[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])
>>> Xtest_scaled[:3,:]
array([[0.03833877, 0.2736787 , 0.28415155],
 [0.03608228, 0.24425597, 0.24633138],
 [0.03438982, 0.23016409, 0.2261206]])
>>> Xtest_inverse[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])

Methods

	fit_transform(dataset)

	Method that estimates an scaler object using the data in dataset and scales the data in dataset

	inverse_transform(dataset)

	Method that inverse-scale the data in dataset

	transform(dataset)

	Method that scales the data in dataset

	
fit_transform(dataset)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_wrangling.py#L196]

	Method that estimates an scaler object using the data in dataset and scales the data in dataset

	Parameters

	dataset (numpy.array) – Dataset used to estimate the scaler

	Returns

	Scaled data

	Return type

	numpy.array

	
inverse_transform(dataset)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_wrangling.py#L229]

	Method that inverse-scale the data in dataset

It must be called after calling the fit_transform method for estimating the scaler

	Parameters

	dataset (numpy.array) – Dataset to be scaled

	Returns

	Inverse-scaled data

	Return type

	numpy.array

	
transform(dataset)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_wrangling.py#L212]

	Method that scales the data in dataset

It must be called after calling the fit_transform method for estimating the scaler
:param dataset: Dataset to be scaled
:type dataset: numpy.array

	Returns

	Scaled data

	Return type

	numpy.array

	
epftoolbox.data.scaling(datasets, normalize)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/data/_wrangling.py#L247]

	Function that scales data and returns the scaled data and the DataScaler used for scaling.

It rescales all the datasets contained in the list datasets using the first dataset as reference.
For example, if datasets=[X_1, X_2, X_3], the function estimates a DataScaler object using the array X_1,
and transform X_1, X_2, and X_3 using the DataScaler object.

Each dataset must be a numpy.array and it should have the same column-dimensions. For example, if
datasets=[X_1, X_2, X_3], X_1 must be a numpy.array of size [n_1, m],
X_2 of size [n_2, m], and X_3 of size [n_3, m], where n_1, n_2, n_3 can be
different.

The scaling technique is defined by the normalize parameter which takes one of the
following values:

	'Norm' for normalizing the data to the interval [0, 1].

	'Norm1' for normalizing the data to the interval [-1, 1].

	'Std' for standarizing the data to follow a normal distribution.

	'Median' for normalizing the data based on the median as defined in as defined in here [https://doi.org/10.1109/TPWRS.2017.2734563].

	'Invariant' for scaling the data based on the asinh transformation (a variance stabilizing transformations) as defined in here [https://doi.org/10.1109/TPWRS.2017.2734563].

The function returns the scaled data together with a DataScaler object representing the scaling.
This object can be used to scale other dataset using the same rules or to inverse-transform the data.

	Parameters

	
	datasets (list) – List of numpy.array objects to be scaled.

	normalize (str) – Type of scaling to be performed. Possible values are 'Norm', 'Norm1', 'Std',
'Median', or 'Invariant'

	Returns

	List of scaled datasets and the DataScaler object used for scaling. Each dataset in the
list is a numpy.array.

	Return type

	List, DataScaler

Example

>>> from epftoolbox.data import read_data
>>> from epftoolbox.data import scaling
>>> df_train, df_test = read_data(path='.', dataset='PJM', begin_test_date='01-01-2016', end_test_date='01-02-2016')
Test datasets: 2016-01-01 00:00:00 - 2016-02-01 23:00:00
>>> df_train.tail()
 Price Exogenous 1 Exogenous 2
Date
2015-12-31 19:00:00 29.513832 100700.0 13015.0
2015-12-31 20:00:00 28.440134 99832.0 12858.0
2015-12-31 21:00:00 26.701700 97033.0 12626.0
2015-12-31 22:00:00 23.262253 92022.0 12176.0
2015-12-31 23:00:00 22.262431 86295.0 11434.0
>>> df_test.head()
 Price Exogenous 1 Exogenous 2
Date
2016-01-01 00:00:00 20.341321 76840.0 10406.0
2016-01-01 01:00:00 19.462741 74819.0 10075.0
2016-01-01 02:00:00 17.172706 73182.0 9795.0
2016-01-01 03:00:00 16.963876 72300.0 9632.0
2016-01-01 04:00:00 17.403722 72535.0 9566.0
>>> Xtrain = df_train.values
>>> Xtest = df_train.values
>>> [Xtrain_scaled, Xtest_scaled], scaler = scaling([Xtrain,Xtest],'Norm')
>>> Xtrain[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])
>>> Xtrain_scaled[:3,:]
array([[0.03833877, 0.2736787 , 0.28415155],
 [0.03608228, 0.24425597, 0.24633138],
 [0.03438982, 0.23016409, 0.2261206]])
>>> Xtest[:3,:]
array([[2.5464211e+01, 8.5049000e+04, 1.1509000e+04],
 [2.3554578e+01, 8.2128000e+04, 1.0942000e+04],
 [2.2122277e+01, 8.0729000e+04, 1.0639000e+04]])
>>> Xtest_scaled[:3,:]
array([[0.03833877, 0.2736787 , 0.28415155],
 [0.03608228, 0.24425597, 0.24633138],
 [0.03438982, 0.23016409, 0.2261206]])
>>> type(scaler)
<class 'epftoolbox.data._wrangling.DataScaler'>

Forecasting models

This subpackage provides an easy interface to two state-of-the-art forecasting models in the field of
electricity price forecasting:

	The LEAR model

	The DNN model

For the LEAR model, the subpackage provides an interface to perform estimation, daily recalibration,
and prediction. For DNN model, it provides an interface to perform estimation,
hyperparameter optimization, daily recalibration, and prediction.

A more detailed explanations of the models can be obtained in:

	Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. “Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark”. Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

LEAR

The LEAR model is a parameter-rich ARX model estimated using the LASSO as an implicit feature selection that was originally proposed by Uniejewski (2016) [https://doi.org/10.3390/en9080621]. It has been used in multiple studies and it has often shown state-of-the-art results in electricity price forecasting, e.g. see Uniejewski (2016) [https://doi.org/10.3390/en9080621] or Lago (2018) [https://doi.org/10.1016/j.apenergy.2018.02.069].

The LEAR model is provided in the library as a sigle LEAR class. The class receives as parameter the calibration window of the method, and has three four main function: a function to recalibrate the model, a function to make predictions, a function to recalibrate and predict, and a function that can perform daily recalibration and prediction using pandas DataFrames.

Besides the LEAR class, the library also includes the evaluate_lear_in_test_dataset function. This function can be used as a simplified interface to evaluate a pandas DataFrame by simply specific the dates of the training and test datasets.

The library also includes a couple of LEAR Examples to get users familiar with the syntax and capabilities of the model.

	LEAR

	evaluate_lear_in_test_dataset

epftoolbox.models.LEAR

	
class epftoolbox.models.LEAR(calibration_window=1092)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L23]

	Class to build a LEAR model, recalibrate it, and use it to predict DA electricity prices.

An example on how to use this class is provided here.

	Parameters

	calibration_window (int, optional) – Calibration window (in days) for the LEAR model.

Methods

	predict(X)

	Function that makes a prediction using some given inputs.

	recalibrate(Xtrain, Ytrain)

	Function to recalibrate the LEAR model.

	recalibrate_and_forecast_next_day(df, …)

	Easy-to-use interface for daily recalibration and forecasting of the LEAR model.

	recalibrate_predict(Xtrain, Ytrain, Xtest)

	Function that first recalibrates the LEAR model and then makes a prediction.

	
predict(X)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L84]

	Function that makes a prediction using some given inputs.

	Parameters

	X (numpy.array) – Input of the model.

	Returns

	An array containing the predictions.

	Return type

	numpy.array

	
recalibrate(Xtrain, Ytrain)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L41]

	Function to recalibrate the LEAR model.

It uses a training (Xtrain, Ytrain) pair for recalibration

	Parameters

	
	Xtrain (numpy.array) – Input in training dataset. It should be of size [n,m] where n is the number of days
in the training dataset and m the number of input features

	Ytrain (numpy.array) – Output in training dataset. It should be of size [n,24] where n is the number of days
in the training dataset and 24 are the 24 prices of each day

	Returns

	The prediction of day-ahead prices after recalibrating the model

	Return type

	numpy.array

	
recalibrate_and_forecast_next_day(df, calibration_window, next_day_date)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L288]

	Easy-to-use interface for daily recalibration and forecasting of the LEAR model.

The function receives a pandas dataframe and a date. Usually, the data should
correspond with the date of the next-day when using for daily recalibration.

	Parameters

	
	df (pandas.DataFrame) – Dataframe of historical data containing prices and N exogenous inputs.
The index of the dataframe should be dates with hourly frequency. The columns
should have the following names ['Price', 'Exogenous 1', 'Exogenous 2',, 'Exogenous N'].

	calibration_window (int) – Calibration window (in days) for the LEAR model.

	next_day_date (datetime) – Date of the day-ahead.

	Returns

	The prediction of day-ahead prices.

	Return type

	numpy.array

	
recalibrate_predict(Xtrain, Ytrain, Xtest)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L115]

	Function that first recalibrates the LEAR model and then makes a prediction.

The function receives the training dataset, and trains the LEAR model. Then, using
the inputs of the test dataset, it makes a new prediction.

	Parameters

	
	Xtrain (numpy.array) – Input of the training dataset.

	Xtest (numpy.array) – Input of the test dataset.

	Ytrain (numpy.array) – Output of the training dataset.

	Returns

	An array containing the predictions in the test dataset.

	Return type

	numpy.array

epftoolbox.models.evaluate_lear_in_test_dataset

	
epftoolbox.models.evaluate_lear_in_test_dataset(path_datasets_folder='./datasets', path_recalibration_folder='./experimental_files', dataset='PJM', years_test=2, calibration_window=1092, begin_test_date=None, end_test_date=None)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_lear.py#L333]

	Function for easy evaluation of the LEAR model in a test dataset using daily recalibration.

The test dataset is defined by a market name and the test dates dates. The function
generates the test and training datasets, and evaluates a LEAR model considering daily recalibration.

An example on how to use this function is provided here.

	Parameters

	
	path_datasets_folder (str, optional) – path where the datasets are stored or, if they do not exist yet,
the path where the datasets are to be stored.

	path_recalibration_folder (str, optional) – path to save the files of the experiment dataset.

	dataset (str, optional) – Name of the dataset/market under study. If it is one one of the standard markets,
i.e. "PJM", "NP", "BE", "FR", or "DE", the dataset is automatically downloaded. If the name
is different, a dataset with a csv format should be place in the path_datasets_folder.

	years_test (int, optional) – Number of years (a year is 364 days) in the test dataset. It is only used if
the arguments begin_test_date and end_test_date are not provided.

	calibration_window (int, optional) – Number of days used in the training dataset for recalibration.

	begin_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
end_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. begin_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

	end_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
begin_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. end_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

	Returns

	A dataframe with all the predictions in the test dataset. The dataframe is also written to path_recalibration_folder.

	Return type

	pandas.DataFrame

DNN

The DNN model is a deep neural network tailored to electricity price forecasting whose input features and hyperparameters are optimized for each market without the need of expert knowledge. The DNN model was originally proposed by Lago (2018) [https://doi.org/10.1016/j.apenergy.2018.02.069] in a study where it was shown to obtain state-of-the-art results. Although more complex, it is often more accurate than individual LEAR models.

The module is built around the DNNModel class. This class represents a basic DNN model based on keras and tensorflow. While the model can be used standalone to train and predict a DNN, it is intended to be used within the hyperparameter_optimizer function and the DNN class.
These two elements represent the main two functionalities of the module.

In particular, the hyperparameter_optimizer function provides an interface to optimize the optimal hyperparameter and features of the DNN model. Then, the DNN class considers the output of the hyperparameter_optimizer function, i.e. the set of optimal hyperparameters and features, and provides an interface to perform recalibration and new predictions. The class extends the functionality of the DNNModel class by providing an interface to extract the best set of hyperparameters, and to perform recalibration before every prediction.

The module also includes the evaluate_dnn_in_test_dataset function. This function can be used as a simplified interface to evaluate a test period in a dataset that is built using a pandas DataFrame.

The library also includes several DNN Examples to get users familiar with the syntax and capabilities of the model.

	DNNModel

	hyperparameter_optimizer

	DNN

	evaluate_dnn_in_test_dataset

epftoolbox.models.DNNModel

	
class epftoolbox.models.DNNModel(neurons, n_features, outputShape=24, dropout=0, batch_normalization=False, lr=None, verbose=False, epochs_early_stopping=40, scaler=None, loss='mae', optimizer='adam', activation='relu', initializer='glorot_uniform', regularization=None, lambda_reg=0)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L29]

	Basic DNN model based on keras and tensorflow.

The model can be used standalone to train and predict a DNN using its fit/predict methods.
However, it is intended to be used within the hyperparameter_optimizer method
and the DNN class. The former obtains a set of best hyperparameter using the DNNModel class.
The latter employes the set of best hyperparameters to recalibrate a DNNModel object
and make predictions.

	Parameters

	
	neurons (list) – List containing the number of neurons in each hidden layer. E.g. if len(neurons) is 2,
the DNN model has an input layer of size n_features, two hidden layers, and an output
layer of size outputShape.

	n_features (int) – Number of input features in the model. This number defines the size of the input layer.

	outputShape (int, optional) – Default number of output neurons. It is 24 as it is the default in most day-ahead markets.

	dropout (float, optional) – Number between [0, 1] that selects the percentage of dropout. A value of 0 indicates
no dropout.

	batch_normalization (bool, optional) – Boolean that selects whether batch normalization is considered.

	lr (float, optional) – Learning rate for optimizer algorithm. If none provided, the default one is employed
(see the keras documentation [https://keras.io/] for the default learning rates of each algorithm).

	verbose (bool, optional) – Boolean that controls the logs. If set to true, a minimum amount of information is
displayed.

	epochs_early_stopping (int, optional) – Number of epochs used in early stopping to stop training. When no improvement is observed
in the validation dataset after epochs_early_stopping epochs, the training stops.

	scaler (epftoolbox.data.DataScaler, optional) – Scaler object to invert-scale the output of the neural network if the neural network
is trained with scaled outputs.

	loss (str, optional) – Loss to be used when training the neural network. Any of the regression losses defined in
keras can be used.

	optimizer (str, optional) – Name of the optimizer when training the DNN. See the keras documentation [https://keras.io/]
for a list of optimizers.

	activation (str, optional) – Name of the activation function in the hidden layers. See the keras documentation [https://keras.io/] for a list
of activation function.

	initializer (str, optional) – Name of the initializer function for the weights of the neural network. See the
keras documentation [https://keras.io/] for a list of initializer functions.

	regularization (None, optional) – Name of the regularization technique. It can can have three values 'l2' for l2-norm
regularization, 'l1' for l1-norm regularization, or None for no regularization .

	lambda_reg (int, optional) – The weight for regulization if regularization is 'l2' or 'l1'.

Methods

	clear_session()

	Method to clear the tensorflow session.

	fit(trainX, trainY, valX, valY)

	Method to estimate the DNN model.

	predict(X)

	Method to make a prediction after the DNN is trained.

	
clear_session()[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L332]

	Method to clear the tensorflow session.

It is used in the DNN class during recalibration to avoid RAM memory leakages.
In particular, if the DNN is retrained continuosly, at each step tensorflow slightly increases
the total RAM usage.

	
fit(trainX, trainY, valX, valY)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L244]

	Method to estimate the DNN model.

	Parameters

	
	trainX (numpy.array) – Inputs fo the training dataset.

	trainY (numpy.array) – Outputs fo the training dataset.

	valX (numpy.array) – Inputs fo the validation dataset used for early-stopping.

	valY (numpy.array) – Outputs fo the validation dataset used for early-stopping.

	
predict(X)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L313]

	Method to make a prediction after the DNN is trained.

	Parameters

	X (numpy.array) – Input to the DNN. It has to be of size [n, n_features] where n can be any
integer, and n_features is the attribute of the DNN representing the number of
input features.

	Returns

	Output of the DNN after making the prediction.

	Return type

	numpy.array

epftoolbox.models.hyperparameter_optimizer

	
epftoolbox.models.hyperparameter_optimizer(path_datasets_folder='./datasets', path_hyperparameters_folder='./experimental_files', new_hyperopt=1, max_evals=1500, nlayers=2, dataset='PJM', years_test=2, calibration_window=4, shuffle_train=1, data_augmentation=0, experiment_id=None, begin_test_date=None, end_test_date=None)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn_hyperopt.py#L210]

	Function to optimize the hyperparameters and input features of the DNN. An example on how to
use this function is provided here.

	Parameters

	
	path_datasets_folder (str, optional) – Path to read and store datasets.

	path_hyperparameters_folder (str, optional) – Path to read and store trials files from hyperopt.

	new_hyperopt (bool, optional) – Boolean that decides whether to start a new hyperparameter optimization or re-start an
existing one.

	max_evals (int, optional) – Maximum number of iterations for hyperopt.

	nlayers (int, optional) – Number of layers of the DNN model.

	dataset (str, optional) – Name of the dataset/market under study. If it is one one of the standard markets,
i.e. "PJM", "NP", "BE", "FR", or "DE", the dataset is automatically downloaded. If the name
is different, a dataset with a csv format should be place in the path_datasets_folder.

	years_test (int, optional) – Number of years (a year is 364 days) in the test dataset. It is only used if
the arguments begin_test_date and end_test_date are not provided.

	calibration_window (int, optional) – Calibration window used for training the models.

	shuffle_train (bool, optional) – Boolean that selects whether the validation and training datasets
are shuffled. Based on empirical results, this configuration does not play a role
when selecting the hyperparameters and features. However, it is important when recalibrating
the DNN model.

	data_augmentation (bool, optional) – Boolean that selects whether a data augmentation technique
for DNNs is used. Based on empirical results, for some markets data augmentation might
improve forecasting accuracy at the expense of higher computational costs.

	experiment_id (None, optional) – Unique identifier to save/read the trials file. If not
provided, the current date is used as identifier.

	begin_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
end_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. begin_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

	end_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
begin_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. end_test_date should either be a string with the following
format "%d/%m/%Y %H:%M", or a datetime object.

epftoolbox.models.DNN

	
class epftoolbox.models.DNN(experiment_id, path_hyperparameter_folder='./experimental_files', nlayers=2, dataset='PJM', years_test=2, shuffle_train=1, data_augmentation=0, calibration_window=4)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L344]

	DNN for electricity price forecasting.

It considers a set of best hyperparameters, it recalibrates a DNNModel based on
these hyperparameters, and makes new predictions.

The difference w.r.t. the DNNModel class lies on the functionality. The
DNNModel class provides a simple interface to build a keras DNN model which
is limited to fit and predict methods. This class extends the functionality by
providing an interface to extract the best set of hyperparameters, and to perform recalibration
before every prediction.

Note that before using this class, a hyperparameter optimization run must be done using the
hyperparameter_optimizer function. Such hyperparameter optimization must be done
using the same parameters: nlayers, dataset, years_test, shuffle_train,
data_augmentation, and calibration_window

An example on how to use this class is provided here.

	Parameters

	
	experiment_id (str) – Unique identifier to read the trials file. In particular, every hyperparameter optimization
set has an unique identifier associated with. See hyperparameter_optimizer for further
details

	path_hyperparameter_folder (str, optional) – Path of the folder containing the trials file with the optimal hyperparameters

	nlayers (int, optional) – Number of layers of the DNN model

	dataset (str, optional) – Name of the dataset/market under study. If it is one one of the standard markets,
i.e. "PJM", "NP", "BE", "FR", or "DE", the dataset is automatically downloaded. If the name
is different, a dataset with a csv format should be place in the path_datasets_folder.

	years_test (int, optional) – Number of years (a year is 364 days) in the test dataset. This is necesary to extract the
correct hyperparameter trials file

	shuffle_train (bool, optional) – Boolean that selects whether the validation and training datasets were shuffled when
performing the hyperparameter optimization. Note that it does not select whether
shuffling is used for recalibration as for recalibration the validation and the
training datasets are always shuffled.

	data_augmentation (bool, optional) – Boolean that selects whether a data augmentation technique for electricity price forecasting
is employed

	calibration_window (int, optional) – Number of days used in the training/validation dataset for recalibration

Methods

	predict(X)

	Method that makes a prediction using some given inputs

	recalibrate(Xtrain, Ytrain, Xval, Yval)

	Method that recalibrates the model.

	recalibrate_and_forecast_next_day(df, …)

	Method that builds an easy-to-use interface for daily recalibration and forecasting of the DNN model

	recalibrate_predict(Xtrain, Ytrain, Xval, …)

	Method that first recalibrates the DNN model and then makes a prediction.

	
predict(X)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L538]

	Method that makes a prediction using some given inputs

	Parameters

	X (numpy.array) – Input of the model

	Returns

	An array containing the predictions

	Return type

	numpy.array

	
recalibrate(Xtrain, Ytrain, Xval, Yval)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L468]

	Method that recalibrates the model.

The method receives the training and validation dataset, and trains a DNNModel model
using the set of optimal hyperparameters that are found in path_hyperparameter_folder and
that are defined by the class attributes: experiment_id, nlayers, dataset,
years_test, shuffle_train, data_augmentation, and calibration_window

	Parameters

	
	Xtrain (numpy.array) – Input of the training dataset

	Xval (numpy.array) – Input of the validation dataset

	Ytrain (numpy.array) – Output of the training dataset

	Yval (numpy.array) – Output of the validation dataset

	
recalibrate_and_forecast_next_day(df, next_day_date)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L559]

	Method that builds an easy-to-use interface for daily recalibration and forecasting of the DNN model

The method receives a pandas dataframe df and a day next_day_date. Then, it
recalibrates the model using data up to the day before next_day_date and makes a prediction
for day next_day_date.

	Parameters

	
	df (pandas.DataFrame) – Dataframe of historical data containing prices and N exogenous inputs. The index of the
dataframe should be dates with hourly frequency. The columns should have the following
names [‘Price’, ‘Exogenous 1’, ‘Exogenous 2’, …., ‘Exogenous N’]

	next_day_date (TYPE) – Date of the day-ahead

	Returns

	An array containing the predictions in the provided date

	Return type

	numpy.array

	
recalibrate_predict(Xtrain, Ytrain, Xval, Yval, Xtest)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L506]

	Method that first recalibrates the DNN model and then makes a prediction.

The method receives the training and validation dataset, and trains a DNNModel model
using the set of optimal hyperparameters. Then, using the inputs of the test dataset,
it makes a new prediction.

	Parameters

	
	Xtrain (numpy.array) – Input of the training dataset

	Xval (numpy.array) – Input of the validation dataset

	Xtest (numpy.array) – Input of the test dataset

	Ytrain (numpy.array) – Output of the training dataset

	Yval (numpy.array) – Output of the validation dataset

	Returns

	An array containing the predictions in the test dataset

	Return type

	numpy.array

epftoolbox.models.evaluate_dnn_in_test_dataset

	
epftoolbox.models.evaluate_dnn_in_test_dataset(experiment_id, path_datasets_folder='./datasets', path_hyperparameter_folder='./experimental_files', path_recalibration_folder='./experimental_files', nlayers=2, dataset='PJM', years_test=2, shuffle_train=True, data_augmentation=0, calibration_window=4, new_recalibration=False, begin_test_date=None, end_test_date=None)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/models/_dnn.py#L608]

	Function for easy evaluation of the DNN model in a test dataset using daily recalibration.

The test dataset is defined by a market name and the test dates dates. The function
generates the test and training datasets, and evaluates a DNN model considering daily recalibration
and an optimal set of hyperparameters.

Note that before using this class, a hyperparameter optimization run must be done using the
hyperparameter_optimizer function. Moreover, the hyperparameter optimization must be done
using the same parameters: nlayers, dataset, shuffle_train,
data_augmentation, calibration_window, and either the years_test or the same
begin_test_date/end_test_date

An example on how to use this function is provided here.

	Parameters

	
	experiment_id (str) – Unique identifier to read the trials file. In particular, every hyperparameter optimization
set has an unique identifier associated with. See hyperparameter_optimizer for further
details

	path_datasets_folder (str, optional) – Path where the datasets are stored or, if they do not exist yet, the path where the datasets
are to be stored

	path_hyperparameter_folder (str, optional) – Path of the folder containing the trials file with the optimal hyperparameters

	path_recalibration_folder (str, optional) – Path to save the forecast of the test dataset

	nlayers (int, optional) – Number of hidden layers in the neural network

	dataset (str, optional) – Name of the dataset/market under study. If it is one one of the standard markets,
i.e. "PJM", "NP", "BE", "FR", or "DE", the dataset is automatically downloaded. If the name
is different, a dataset with a csv format should be place in the path_datasets_folder.

	years_test (int, optional) – Number of years (a year is 364 days) in the test dataset. It is only used if
the arguments begin_test_date and end_test_date are not provided.

	begin_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
end_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. begin_test_date should either be a string with the following
format d/m/Y H:M, or a datetime object

	end_test_date (datetime/str, optional) – Optional parameter to select the test dataset. Used in combination with the argument
begin_test_date. If either of them is not provided, the test dataset is built using the
years_test argument. end_test_date should either be a string with the following
format d/m/Y H:M, or a datetime object

	shuffle_train (bool, optional) – Boolean that selects whether the validation and training datasets were shuffled when
performing the hyperparameter optimization. Note that it does not select whether
shuffling is used for recalibration as for recalibration the validation and the
training datasets are always shuffled.

	data_augmentation (bool, optional) – Boolean that selects whether a data augmentation technique for electricity price forecasting
is employed

	calibration_window (int, optional) – Number of days used in the training/validation dataset for recalibration

	new_recalibration (bool, optional) – Boolean that selects whether a new recalibration is performed or the function re-starts an old one.
To restart an old one, the .csv file with the forecast must exist in the
path_recalibration_folder folder

	Returns

	A dataframe with all the predictions in the test dataset. The dataframe is also
written to the folder path_recalibration_folder

	Return type

	pandas.DataFrame

Model evaluation

This subpackage provides a set of tools to evaluate forecasts and forecasting models in terms of accuracy metrics and statistical tests.

The first subset of tools, which is provided by the accuracy metrics module, evaluate the errors of the predictions based on a single value. They analyze how far the predictions are from the mean or median of the real prices. Examples of metrics are the mean absolute percentage error (MAPE) or the relative mean absolute error (rMAE).

The second subset of tools, which is provided by the statistical test module, allows comparison between models by analyzing whether the difference in accuracy in the forecasts of the models is statistically significant. Unlike accuracy metrics, statistical tests allow to infer whether the difference in accuracy does really exist and it is not simply due to random differences between the forecasts.

	Accuracy Metrics
	MAE

	RMSE

	MAPE

	sMAPE

	MASE

	rMAE

	Naive forecast

	Statistical testing
	Diebold-Mariano test

	Giacomini-White test

Accuracy Metrics

This module provides an easy-to-use interface to the most common and most suitable accuracy metrics in the context of day-ahead prices:

	MAE

	RMSE

	MAPE

	sMAPE

	MASE

	rMAE

In addition, it also includes an implementation of the standard naive forecasts in electricity price forecasting. These forecasts are used to compute the MASE and rMAE metrics:

	Naive forecast

Standard Metrics

In the field of electricity price forecasting, two of the most widely used accuracy metrics are the mean absolute error (MAE) and the root mean square error (RMSE):

\[\begin{split}\begin{align}
 \mathrm{MAE} &= \frac{1}{N}\sum_{k=1}^{N}|p_k-\hat{p}_k|,\\
 \mathrm{RMSE} &= \sqrt{\frac{1}{N}\sum_{k=1}^{N}(p_k-\hat{p}_k)^2},\\
\end{align}\end{split}\]

where \(p_k\) and \(\hat{p}_k\) respectively represent the real and forecasted prices at time step \(k\).

Despite their popularity, the MAE and RMSE are not always very informative as absolute errors are hard to compare between different datasets. In addition, RMSE has the extra disadvantage of not representing accurately the underlying problem (electricity costs often depend linearly on prices but RMSE is based on squared errors).

Another standard metric is the mean absolute percentage error (MAPE):

\[\begin{equation}
 \mathrm{MAPE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{|p_k|}.
\end{equation}\]

While it provides a relative error metric that would grant comparison between datasets, its values become very large with prices close to zero (regardless of the actual absolute errors) and is also not very informative.

Another propular metric is the symmetric mean absolute percentage error (sMAPE):

\[\begin{split}\begin{equation}
 \mathrm{sMAPE} = \frac{1}{N}\sum_{k=1}^{N}2\frac{|p_k-\hat{p}_k|}{|p_k| + |\hat{p}_k|},\\
\end{equation}\end{split}\]

Although the sMAPE solves some of these issues, it has a statistical distribution with undefined mean and infinite variance.

MASE

Arguably better metrics are those based on scaled errors, where a scaled error is simply the MAE scaled by the in-sample MAE of a naive forecast. A scaled error has the nice interpretation of being lower/larger than one if it is better/worse than the average naive forecast evaluated in-sample.
A metric based on this concept is the mean absolute scaled error (MASE), and in the context of one-step ahead forecasting is defined as:

\[\begin{equation}
 \mathrm{MASE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{n-1}\sum_{i=2}^{n} |p^\mathrm{in}_i - p^\mathrm{in}_{i-1} |},
\end{equation}\]

where \(p^\mathrm{in}_i\) is the \(i^\mathrm{th}\) price in the in-sample dataset and \(n\) the size of the in-sample dataset.

rMAE

While scaled errors do indeed solve the issues of more traditional metrics, they have other associated problems that make them not unsuitable in the context of EPF:

	As MASE depends on the in-sample dataset, forecasting methods with different calibration windows consider different in-sample datasets. Hence, the MASE of each model is based on a different scaling factor and comparisons between models cannot be drawn.

	Drawing comparisons across different time series is problematic as electricity prices are not stationary. For example, an in-sample dataset with spikes and an out-of-sample dataset without spikes will lead to a smaller MASE than if we consider the same market but with the in-sample/out-sample datasets reversed.

To solve these issues, an arguably better metric is the relative MAE (rMAE) . Similar to MASE, rMAE normalizes the MAE by the MAE of a naive forecast. However, instead of considering the in-sample dataset, the naive forecast is built based on the out-of-sample dataset. In the context of one-step ahead forecasting is defined as:

\[\begin{equation}
 \mathrm{rMAE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{N-1}\sum_{i=2}^{N} |p_i - p_{i-1} |}.
\end{equation}\]

MAE

In the field of electricity price forecasting, one of the most widely used metrics to measure the accuracy of point forecasts is the mean absolute error (MAE):

\[\begin{split}\begin{align}
 \mathrm{MAE} &= \frac{1}{N}\sum_{k=1}^{N}|p_k-\hat{p}_k|,\\
\end{align}\end{split}\]

This metric computes the average absolute error between the predicted prices and the real prices. Predictive models that minimize the MAE lead to predictions of the median of the prices. Despite its popularity, the MAE is not always very informative as absolute errors are hard to compare between different datasets.

epftoolbox.evaluation.MAE

	
epftoolbox.evaluation.MAE(p_real, p_pred)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_mae.py#L13]

	Function that computes the mean absolute error (MAE) between two forecasts:

\[\mathrm{MAE} = \frac{1}{N}\sum_{i=1}^N \bigl|p_\mathrm{real}[i]-p_\mathrm{pred}[i]\bigr|\]

p_real and p_pred can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\).

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame, pandas.Series) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame, pandas.Series) – Array/dataframe containing the predicted prices.

	Returns

	The mean absolute error (MAE).

	Return type

	float

Example

>>> from epftoolbox.evaluation import MAE
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)

>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day)
>>> # instead of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346

According to the paper, the MAE of the DNN ensemble for the NP market is 1.667
Let’s test the metric for different conditions

>>> # Evaluating MAE when real price and forecasts are both dataframes
>>> MAE(p_pred=fc_DNN_ensemble, p_real=real_price)
1.6670355192007669
>>>
>>> # Evaluating MAE when real price and forecasts are both numpy arrays
>>> MAE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values)
1.6670355192007669
>>>
>>> # Evaluating MAE when input values are of shape (ndays, n_prices/day)
>>> # instead of shape (nprices, 1)
>>> # Dataframes
>>> MAE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D)
1.6670355192007669
>>> # Numpy arrays
>>> MAE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values)
1.6670355192007669
>>>
>>> # Evaluating MAE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> MAE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price'])
1.6670355192007669
>>> # Numpy arrays
>>> MAE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze())
1.6670355192007669

RMSE

In the field of electricity price forecasting, one of the most widely used metrics to measure the accuracy of point forecasts is the root mean square erro (RMSE):

\[\begin{split}\begin{align}
 \mathrm{RMSE} &= \sqrt{\frac{1}{N}\sum_{k=1}^{N}(p_k-\hat{p}_k)^2},\\
\end{align}\end{split}\]

This metric computes the square root of the average of the square errors between the predicted prices and the real prices. Predictive models that minimize the RMSE lead to predictions of the mean of the prices.

Despite its popularity,RMSE is not always very informative as absolute errors are hard to compare between different datasets. In addition, it has the disadvantage of not representing accurately the underlying problem of electricity price forecasting as electricity costs often depend linearly on prices but the RMSE is based on squared errors.

epftoolbox.evaluation.RMSE

	
epftoolbox.evaluation.RMSE(p_real, p_pred)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_rmse.py#L13]

	Function that computes the root mean square error (RMSE) between two forecasts

\[\mathrm{RMSE} = \frac{1}{N}\sum_{i=1}^N \sqrt{\bigl(p_\mathrm{real}[i]−p_\mathrm{pred}[i]\bigr)^2}\]

p_real and p_pred can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\).

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the predicted prices.

	Returns

	The root mean square error (RMSE).

	Return type

	float

Example

>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346

According to the paper, the RMSE of the DNN ensemble for the NP market is 3.333.
Let’s test the metric for different conditions

>>> # Evaluating RMSE when real price and forecasts are both dataframes
>>> RMSE(p_pred=fc_DNN_ensemble, p_real=real_price)
3.3331928060389995
>>>
>>> # Evaluating RMSE when real price and forecasts are both numpy arrays
>>> RMSE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values)
3.3331928060389995
>>>
>>> # Evaluating RMSE when input values are of shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1)
>>> # Dataframes
>>> RMSE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D)
3.3331928060389995
>>> # Numpy arrays
>>> RMSE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values)
3.3331928060389995
>>>
>>> # Evaluating RMSE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> RMSE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price'])
3.3331928060389995
>>> # Numpy arrays
>>> RMSE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze())
3.3331928060389995

MAPE

Another popular metric for electricity price forecasting is the mean absolute percentage error (MAPE):

\[\begin{equation}
 \mathrm{MAPE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{|p_k|}.
\end{equation}\]

This metric computes the MAE between the predicted prices and the real prices and normalizes it by the absolute value of the real prices.

While it provides a relative error metric that would grant comparison between datasets, its values become very large with prices close to zero (regardless of the actual absolute errors) and is also not very informative.

epftoolbox.evaluation.MAPE

	
epftoolbox.evaluation.MAPE(p_real, p_pred, noNaN=False)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_mape.py#L13]

	Function that computes the mean absolute percentage error (MAPE) between two forecasts:

\[\mathrm{MAPE} = \frac{1}{N}\sum_{i=1}^N \frac{\bigl|p_\mathrm{real}[i]−p_\mathrm{pred}[i]\bigr|}{
\bigl|Y_\mathrm{real}[i]\bigr|}\]

p_real and p_pred can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\).

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the predicted prices.

	noNaN (bool, optional) – Bool to remove the NaN values resulting of dividing by 0 in the MAPE. It has to be used
if any value in p_real is 0.

	Returns

	The mean absolute percentage error (MAPE).

	Return type

	float

Example

>>> from epftoolbox.evaluation import MAPE
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346

According to the paper, the MAPE of the DNN ensemble for the NP market is 5.38%.
Let’s test the metric for different conditions

>>> # Evaluating MAPE when real price and forecasts are both dataframes
>>> MAPE(p_pred=fc_DNN_ensemble, p_real=real_price) * 100
5.376051161768693
>>>
>>> # Evaluating MAPE when real price and forecasts are both numpy arrays
>>> MAPE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values) * 100
5.376051161768693
>>>
>>> # Evaluating MAPE when input values are of shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1)
>>> # Dataframes
>>> MAPE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D) * 100
5.376051161768693
>>> # Numpy arrays
>>> MAPE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values) * 100
5.376051161768693
>>>
>>> # Evaluating MAPE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> MAPE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price']) * 100
5.376051161768693
>>> # Numpy arrays
>>> MAPE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze()) * 100
5.376051161768693

sMAPE

Another popular metric in the field of electricity price forecasting is the symmetric mean absolute percentage error (sMAPE):

\[\begin{split}\begin{equation}
 \mathrm{sMAPE} = \frac{1}{N}\sum_{k=1}^{N}2\frac{|p_k-\hat{p}_k|}{|p_k| + |\hat{p}_k|},\\
\end{equation}\end{split}\]

This metric computes the MAE between the predicted prices and the real prices and normalizes it by the average of the absolute value of both quantities. Note, that there are multiple versions [https://robjhyndman.com/hyndsight/smape/] of sMAPE and here we consider the most sensible one [https://robjhyndman.com/hyndsight/smape/].

Although the sMAPE provides a metric based on relative errors that would grant comparison between datasets and even though it solves some of the issues of MAE, RMSE, and MAPE and, it has a statistical distribution with undefined mean and infinite variance.

epftoolbox.evaluation.sMAPE

	
epftoolbox.evaluation.sMAPE(p_real, p_pred)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_smape.py#L14]

	Function that computes the symmetric mean absolute percentage error (sMAPE) between two forecasts

Note that there are multiple versions of sMAPE, here we con-sider the most sensible
one [https://robjhyndman.com/hyndsight/smape/] :

\[\mathrm{sMAPE} = \frac{1}{N}\sum_{i=1}^N \frac{2\bigl|p_\mathrm{real}[i]−p_\mathrm{pred}[i]\bigr|}{
\bigl|P_\mathrm{real}[i]\bigr|+\bigl|P_\mathrm{pred}[i]\bigr|}\]

p_real and p_pred can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\).

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the predicted prices.

	Returns

	The symmetric mean absolute percentage error (sMAPE).

	Return type

	float

Example

>>> from epftoolbox.evaluation import sMAPE
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346

According to the paper, the sMAPE of the DNN ensemble for the NP market is 4.85%.
Let’s test the metric for different conditions

>>> # Evaluating sMAPE when real price and forecasts are both dataframes
>>> sMAPE(p_pred=fc_DNN_ensemble, p_real=real_price) * 100
4.846295174735425
>>>
>>> # Evaluating sMAPE when real price and forecasts are both numpy arrays
>>> sMAPE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values) * 100
4.846295174735425
>>>
>>> # Evaluating sMAPE when input values are of shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1)
>>> # Dataframes
>>> sMAPE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D) * 100
4.846295174735425
>>> # Numpy arrays
>>> sMAPE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values) * 100
4.846295174735425
>>>
>>> # Evaluating sMAPE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> sMAPE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price']) * 100
4.846295174735425
>>> # Numpy arrays
>>> sMAPE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze()) * 100
4.846295174735425

MASE

Considering the errors of standard metrics described in the introduction, metrics based on scaled errors, where a scaled error is simply the MAE scaled by the in-sample MAE of a naive forecast, are arguably better. A scaled error has the nice interpretation of being lower/larger than one if it is better/worse than the average naive forecast evaluated in-sample.

A metric based on this concept is the mean absolute scaled error (MASE), and in the context of one-step ahead forecasting is defined as:

\[\begin{equation}
 \mathrm{MASE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{n-1}\sum_{i=2}^{n} |p^\mathrm{in}_i - p^\mathrm{in}_{i-1} |},
\end{equation}\]

where \(p^\mathrm{in}_i\) is the \(i^\mathrm{th}\) price in the in-sample dataset and \(n\) the size of the in-sample dataset. For seasonal time series, the MASE may be defined using the MAE of a seasonal naive model in the denominator:

\[\begin{equation}
\mathrm{MASE}_{m} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{n-m}\sum_{i=m+1}^{n} |p^\mathrm{in}_i - p^\mathrm{in}_{i-m} |}
\end{equation}\]

where \(m\) represents the seasonal length (in the case of day-ahead prices that could be either 24 or 168 representing the daily and weekly seasonalities). As an alternative, the naive forecast can also be defined on the standard naive forecast for price forecasting (using daily seasonality for Tuesday to Friday and weekly seasonality for Saturday to Monday).

epftoolbox.evaluation.MASE

	
epftoolbox.evaluation.MASE(p_real, p_pred, p_real_in, m=None, freq='1H')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_mase.py#L15]

	Function that computes the mean absolute scaled error (MASE) between two forecasts:

\[\mathrm{MASE}_\mathrm{m} = \frac{1}{N}\sum_{i=1}^N
 \frac{\bigl|p_\mathrm{real}[i]−p_\mathrm{pred}[i]\bigr|}
 {\mathrm{MAE}(p_\mathrm{real_in}, p_\mathrm{naive_in}, m)}.\]

The numerator is the MAE of a naive forecast Ynaive_in that is built using the insample
dataset p_real_in and the naive_forecast function with a seasonality index m.

If the datasets provided are numpy.ndarray objects, the function requires a freq argument specifying
the data frequency. The freq argument must take one of the following four values '1H' for 1 hour,
'30T' for 30 minutes, '15T' for 15 minutes, or '5T' for 5 minutes, (these are the
four standard values in day-ahead electricity markets).

Also, if the datasets provided are numpy.ndarray objects, m has to be 24 or 168, i.e. the
naive_forecast cannot be the standard in electricity price forecasting because the input
data does not have associated a day of the week.

p_real, p_pred, and p_real_in` can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\)

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the predicted prices.

	p_real_in (numpy.ndarray, pandas.DataFrame) – Insample dataset that is used to compute build a naive_forecast and compute its MAE

	m (int, optional) – Index that specifies the seasonality in the naive_forecast used to compute the normalizing
insample MAE. It can be be 'D' for daily seasonality, 'W' for weekly seasonality, or None
for the standard naive forecast in electricity price forecasting,
i.e. daily seasonality for Tuesday to Friday and weekly seasonality
for Saturday to Monday.

	freq (str, optional) – Frequency of the data if p_real, p_pred, and p_real_in are numpy.ndarray objects.
It must take one of the following four values '1H' for 1 hour, '30T' for 30 minutes,
'15T' for 15 minutes, or '5T' for 5 minutes, (these are the four standard values in
day-ahead electricity markets).

	Returns

	The mean absolute scaled error (MASE).

	Return type

	float

Example

>>> from epftoolbox.evaluation import MASE
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> df_train, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>> real_price_insample = df_train.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_insample_2D = pd.DataFrame(real_price_insample.values.reshape(-1, 24),
... index=real_price_insample.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>>
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346
>>>

Let’s test the metric for different conditions.

>>> # Evaluating MASE when real price and forecasts are both dataframes
>>> MASE(p_pred=fc_DNN_ensemble, p_real=real_price,
... p_real_in=real_price_insample, m='W')
0.5217886515713188
>>>
>>> # Evaluating MASE when real price and forecasts are both numpy arrays
>>> MASE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values,
... p_real_in=real_price_insample.values, m='W', freq='1H')
0.5217886515713188
>>>
>>> # Evaluating MASE when input values are of shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1)
>>> # Dataframes
>>> MASE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D,
... p_real_in=real_price_insample_2D, m='W')
0.5217886515713188
>>> # Numpy arrays
>>> MASE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values,
... p_real_in=real_price_insample_2D.values, m='W', freq='1H')
0.5217886515713188
>>>
>>> # Evaluating MASE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> MASE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price'],
... p_real_in=real_price_insample.loc[:, 'Price'], m='W')
0.5217886515713188
>>> # Numpy arrays
>>> MASE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze(),
... p_real_in=real_price_insample.values.squeeze(), m='W', freq='1H')
0.5217886515713188

rMAE

While scaled errors do indeed solve the issues of more traditional metrics, they have other associated problems that make them not unsuitable in the context of EPF:

	As MASE depends on the in-sample dataset, forecasting methods with different calibration windows will naturally have to consider different in-sample datasets. As a result, the MASE of each model will be based on a different scaling factor and comparisons between models cannot be drawn.

	The same argument applies to models with and without rolling windows. The latter will use a different in-sample dataset at every time point while the former will keep the in-sample dataset constant.

	In ensembles of models with different calibration windows, the MASE cannot be defined as the calibration window of the ensemble is undefined.

	Drawing comparisons across different time series is problematic as electricity prices are not stationary. For example, an in-sample dataset with spikes and an out-of-sample dataset without spikes will lead to a smaller MASE than if we consider the same market but with the in-sample/out-sample datasets reversed.

To solve these issues, an arguably better metric is the relative MAE (rMAE). Similar to MASE, rMAE normalizes the MAE by the MAE of a naive forecast. However, instead of considering the in-sample dataset, the naive forecast is built based on the out-of-sample dataset. In the context In the context of one-step ahead forecasting is defined as:

\[\begin{equation}
 \mathrm{rMAE} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{N-1}\sum_{i=2}^{N} |p_i - p_{i-1} |}.
\end{equation}\]

For seasonal time series, the rMAE may be defined using the MAE of a seasonal naive model in the denominator:

\[\begin{equation}
\mathrm{rMAE}_{m} = \frac{1}{N}\sum_{k=1}^{N}\frac{|p_k-\hat{p}_k|}{\frac{1}{N-m}\sum_{i=m+1}^{N} |p_i - p_{i-m} |}
\end{equation}\]

where \(m\) represents the seasonal length (in the case of day-ahead prices that could be either 24 or 168 representing the daily and weekly seasonalities). As an alternative, the naive forecast can also be defined on the standard naive forecast for price forecasting (using daily seasonality for Tuesday to Friday and weekly seasonality for Saturday to Monday).

epftoolbox.evaluation.rMAE

	
epftoolbox.evaluation.rMAE(p_real, p_pred, m=None, freq='1H')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_rmae.py#L14]

	Function that computes the relative mean absolute error (rMAE) between two forecasts:

\[\mathrm{rMAE}_\mathrm{m} = \frac{1}{N}\sum_{i=1}^N
 \frac{\bigl|p_\mathrm{real}[i]−p_\mathrm{pred}[i]\bigr|}
 {\mathrm{MAE}(p_\mathrm{real}, p_\mathrm{naive})}.\]

The numerator is the MAE of a naive forecast p_naive that is built using the
dataset p_real and the naive_forecast function with a seasonality index m.

If the datasets provided are numpy.ndarray objects, the function requires a freq argument specifying
the data frequency. The freq argument must take one of the following four values '1H' for 1 hour,
'30T' for 30 minutes, '15T' for 15 minutes, or '5T' for 5 minutes, (these are the
four standard values in day-ahead electricity markets).

Also, if the datasets provided are numpy.ndarray objects, m has to be 'D' or 'W', i.e. the
naive_forecast cannot be the standard in electricity price forecasting because the input
data does not have associated a day of the week.

p_real, p_pred, and p_real_in` can either be of shape
\((n_\mathrm{days}, n_\mathrm{prices/day})\),
\((n_\mathrm{prices}, 1)\), or \((n_\mathrm{prices},)\) where
\(n_\mathrm{prices} = n_\mathrm{days} \cdot n_\mathrm{prices/day}\)

	Parameters

	
	p_real (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the real prices.

	p_pred (numpy.ndarray, pandas.DataFrame) – Array/dataframe containing the predicted prices.

	m (int, optional) – Index that specifies the seasonality in the naive_forecast used to compute the normalizing
insample MAE. It can be be 'D' for daily seasonality, 'W' for weekly seasonality, or None
for the standard naive forecast in electricity price forecasting,
i.e. daily seasonality for Tuesday to Friday and weekly seasonality
for Saturday to Monday.

	freq (str, optional) – Frequency of the data if p_real, p_pred, and p_real_in are numpy.ndarray objects.
It must take one of the following four values '1H' for 1 hour, '30T' for 30 minutes,
'15T' for 15 minutes, or '5T' for 5 minutes, (these are the four standard values in
day-ahead electricity markets). If the shape of p_real is (ndays, n_prices_day),
freq should be the frequency of the columns not the daily frequency of the rows.

	Returns

	The mean absolute scaled error (MASE).

	Return type

	float

Example

>>> from epftoolbox.evaluation import rMAE
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecast = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Transforming indices to datetime format
>>> forecast.index = pd.to_datetime(forecast.index)
>>>
>>> # Reading data from the NP market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecast.index[0],
... end_test_date=forecast.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> # Extracting forecast of DNN ensemble and display
>>> fc_DNN_ensemble = forecast.loc[:, ['DNN Ensemble']]
>>>
>>> # Extracting real price and display
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Building the same datasets with shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1) and display
>>> fc_DNN_ensemble_2D = pd.DataFrame(fc_DNN_ensemble.values.reshape(-1, 24),
... index=fc_DNN_ensemble.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> real_price_2D = pd.DataFrame(real_price.values.reshape(-1, 24),
... index=real_price.index[::24],
... columns=['h' + str(hour) for hour in range(24)])
>>> fc_DNN_ensemble_2D.head()
 h0 h1 h2 ... h21 h22 h23
2016-12-27 24.349676 23.127774 22.208617 ... 27.686771 27.045763 25.724071
2016-12-28 25.453866 24.707317 24.452384 ... 29.424558 28.627130 27.321902
2016-12-29 28.209516 27.715400 27.182692 ... 28.473288 27.926241 27.153401
2016-12-30 28.002935 27.467572 27.028558 ... 29.086532 28.518688 27.738548
2016-12-31 25.732282 24.668331 23.951569 ... 26.965008 26.450995 25.637346
>>>

According to the paper, the rMAE of the DNN ensemble for the NP market is 0.403
when m='W'. Let’s test the metric for different conditions

>>> # Evaluating rMAE when real price and forecasts are both dataframes
>>> rMAE(p_pred=fc_DNN_ensemble, p_real=real_price)
0.5265639198107801
>>>
>>> # Evaluating rMAE when real price and forecasts are both numpy arrays
>>> rMAE(p_pred=fc_DNN_ensemble.values, p_real=real_price.values, m='W', freq='1H')
0.4031805447246898
>>>
>>> # Evaluating rMAE when input values are of shape (ndays, n_prices/day) instead
>>> # of shape (nprices, 1)
>>> # Dataframes
>>> rMAE(p_pred=fc_DNN_ensemble_2D, p_real=real_price_2D, m='W')
0.4031805447246898
>>> # Numpy arrays
>>> rMAE(p_pred=fc_DNN_ensemble_2D.values, p_real=real_price_2D.values, m='W', freq='1H')
0.4031805447246898
>>>
>>> # Evaluating rMAE when input values are of shape (nprices,)
>>> # instead of shape (nprices, 1)
>>> # Pandas Series
>>> rMAE(p_pred=fc_DNN_ensemble.loc[:, 'DNN Ensemble'],
... p_real=real_price.loc[:, 'Price'], m='W')
0.4031805447246898
>>> # Numpy arrays
>>> rMAE(p_pred=fc_DNN_ensemble.values.squeeze(),
... p_real=real_price.values.squeeze(), m='W', freq='1H')
0.4031805447246898

Naive forecast

To compute the rMAE and the MASE, a naive forecast is employed. The naive forecast can be built by three methods:

	Considering daily seasonality and assuming that the prices from one day to the other do not change.

	Considering weekly seasonality and assuming that the prices from one week to the other do not change

	Considering different seasonality dependening on the day of the week: daily seasonality for Tuesday to Friday and weekly seasonality for Saturday to Monday.

	
epftoolbox.evaluation.naive_forecast(p_real, m=None, n_prices_day=24)[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_ancillary_functions.py#L55]

	Function to buil the naive forecast for electricity price forecasting

The function is used to compute the accuracy metrics MASE and RMAE

	Parameters

	
	p_real (pandas.DataFrame) – Dataframe containing the real prices. It must be of shape \((n_\mathrm{prices}, 1)\),

	m (int, optional) – Index that specifies the seasonality in the naive forecast. It can
be 'D' for daily seasonality, 'W' for weekly seasonality, or None
for the standard naive forecast in electricity price forecasting,
i.e. daily seasonality for Tuesday to Friday and weekly seasonality
for Saturday to Monday.

	n_prices_day (int, optional) – Number of prices in a day. Usually this value is 24 for most day-ahead markets

	Returns

	Dataframe containing the predictions of the naive forecast.

	Return type

	pandas.DataFrame

Statistical testing

While using adequate metrics to compare the accuracy of the forecasts is important, it is also necessary to analyze whether any difference in accuracy is statistically significant. This is paramount to conclude whether the difference in accuracy does really exist and it is not simply due to random differences between the forecasts.

	Diebold-Mariano test
	DM test

	plot_multivariate_DM_test

	Giacomini-White test
	GW test

	plot_multivariate_GW_test

Diebold-Mariano test

This module provides a function DM that implements the one-sided version of the Diebold-Mariano (DM) test in the context of electricity price forecasting.

Besides the DM test, the module also provides a function plot_multivariate_DM_test to plot the DM results when comparing multiple forecasts.

DM test

The Diebold-Mariano (DM) test is probably the most commonly used tool to evaluate the significance of differences in forecasting accuracy. It is an asymptotic z-test of the hypothesis that the mean of the loss differential series:

\[\begin{equation}
\Delta^{\mathrm{A, B}}_{k} = L(\varepsilon^\mathrm{A}_{k}) - L(\varepsilon^\mathrm{B}_{k})
\end{equation}\]

where \(\varepsilon^\mathrm{Z}_{k}=p_{k}-\hat{p}_{k}\) is the prediction error of model Z for time step
\(k\) and \(L(\cdot)\) is the loss function. For point forecasts, we usually take \(L(\varepsilon^\mathrm{Z}_{k})=|\varepsilon^\mathrm{Z}_{k}|^p\) with \(p=1\) or \(2\), which corresponds to the absolute and squared losses.

This module implements the one-sided version of the DM test using the a function DM function. Given the forecast of a model A and the forecast of a model B, the test evaluates the null hypothesis \(H_0\) of the mean of the loss differential of model A being lower or equal than that of model B. Hence, rejecting the null \(H_0\) means that the forecasts of model B are significantly more accurate than those of model A.

The module provides the two standard versions of the test in electricity price forecasting: an univariate and a multivariate version. The univariate version of the test has the advantage of providing a deeper analysis as
it indicates which forecast is significantly better for which hour of the days. The multivariate version
grants a better representation of the results as it summarizes the comparison in a single p-value.

	
epftoolbox.evaluation.DM(p_real, p_pred_1, p_pred_2, norm=1, version='univariate')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_dm.py#L16]

	Function that performs the one-sided DM test in the contex of electricity price forecasting

The test compares whether there is a difference in predictive accuracy between two forecast
p_pred_1 and p_pred_2. Particularly, the one-sided DM test evaluates the null hypothesis H0
of the forecasting errors of p_pred_2 being larger (worse) than the forecasting
errors p_pred_1 vs the alternative hypothesis H1 of the errors of p_pred_2 being smaller (better).
Hence, rejecting H0 means that the forecast p_pred_2 is significantly more accurate
that forecast p_pred_1. (Note that this is an informal definition. For a formal one we refer to
here [https://epftoolbox.readthedocs.io/en/latest/modules/cite.html])

Two versions of the test are possible:

1. A univariate version with as many independent tests performed as prices per day, i.e. 24
tests in most day-ahead electricity markets.

2. A multivariate with the test performed jointly for all hours using the multivariate
loss differential series (see this
article [https://epftoolbox.readthedocs.io/en/latest/modules/cite.html] for details.

	Parameters

	
	p_real (numpy.ndarray) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the real market
prices

	p_pred_1 (TYPE) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the first forecast

	p_pred_2 (TYPE) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the second forecast

	norm (int, optional) – Norm used to compute the loss differential series. At the moment, this value must either
be 1 (for the norm-1) or 2 (for the norm-2).

	version (str, optional) – Version of the test as defined in
here [https://epftoolbox.readthedocs.io/en/latest/modules/cite.html]. It can have two values:
'univariate or 'multivariate

	Returns

	The p-value after performing the test. It is a float in the case of the multivariate test
and a numpy array with a p-value per hour for the univariate test

	Return type

	float, numpy.ndarray

Example

>>> from epftoolbox.evaluation import DM
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Generating forecasts of multiple models
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecasts = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Deleting the real price field as it the actual real price and not a forecast
>>> del forecasts['Real price']
>>>
>>> # Transforming indices to datetime format
>>> forecasts.index = pd.to_datetime(forecasts.index)
>>>
>>> # Extracting the real prices from the market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecasts.index[0],
... end_test_date=forecasts.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Testing the univariate DM version on an ensemble of DNN models versus an ensemble
>>> # of LEAR models
>>> DM(p_real=real_price.values.reshape(-1, 24),
... p_pred_1=forecasts.loc[:, 'LEAR Ensemble'].values.reshape(-1, 24),
... p_pred_2=forecasts.loc[:, 'DNN Ensemble'].values.reshape(-1, 24),
... norm=1, version='univariate')
array([9.99999944e-01, 9.97562415e-01, 8.10333949e-01, 8.85201928e-01,
 9.33505978e-01, 8.78116764e-01, 1.70135981e-02, 2.37961920e-04,
 5.52337353e-04, 6.07843340e-05, 1.51249750e-03, 1.70415008e-03,
 4.22319907e-03, 2.32808010e-03, 3.55958698e-03, 4.80663621e-03,
 1.64841032e-04, 4.55829140e-02, 5.86609688e-02, 1.98878375e-03,
 1.04045731e-01, 8.71203187e-02, 2.64266732e-01, 4.06676195e-02])
>>>
>>> # Testing the multivariate DM version
>>> DM(p_real=real_price.values.reshape(-1, 24),
... p_pred_1=forecasts.loc[:, 'LEAR Ensemble'].values.reshape(-1, 24),
... p_pred_2=forecasts.loc[:, 'DNN Ensemble'].values.reshape(-1, 24),
... norm=1, version='multivariate')
0.003005725748326471

plot_multivariate_DM_test

The plot_multivariate_DM_test provides an easy-to-use interface to plot in a heat map with a chessboard shape the results of using the DM test to compare the forecasts of multiple models. An example of the heat map is provided below in the function example.

	
epftoolbox.evaluation.plot_multivariate_DM_test(real_price, forecasts, norm=1, title='DM test', savefig=False, path='')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_dm.py#L155]

	Plotting the results of comparing forecasts using the multivariate DM test.

The resulting plot is a heat map in a chessboard shape. It represents the p-value
of the null hypothesis of the forecast in the y-axis being significantly more
accurate than the forecast in the x-axis. In other words, p-values close to 0
represent cases where the forecast in the x-axis is significantly more accurate
than the forecast in the y-axis.

	Parameters

	
	real_price (pandas.DataFrame) – Dataframe that contains the real prices

	forecasts (TYPE) – Dataframe that contains the forecasts of different models. The column names are the
forecast/model names. The number of datapoints should equal the number of datapoints
in real_price.

	norm (int, optional) – Norm used to compute the loss differential series. At the moment, this value must either
be 1 (for the norm-1) or 2 (for the norm-2).

	title (str, optional) – Title of the generated plot

	savefig (bool, optional) – Boolean that selects whether the figure should be saved in the current folder

	path (str, optional) – Path to save the figure. Only necessary when savefig=True

Example

>>> from epftoolbox.evaluation import DM, plot_multivariate_DM_test
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Generating forecasts of multiple models
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecasts = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Deleting the real price field as it the actual real price and not a forecast
>>> del forecasts['Real price']
>>>
>>> # Transforming indices to datetime format
>>> forecasts.index = pd.to_datetime(forecasts.index)
>>>
>>> # Extracting the real prices from the market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecasts.index[0],
... end_test_date=forecasts.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Generating a plot to compare the models using the multivariate DM test
>>> plot_multivariate_DM_test(real_price=real_price, forecasts=forecasts)

[image: ../../_images/DM.png]

Giacomini-White test

This module provides a function GW that implements the one-sided version of the Giacomini-White (GW) test for Conditional Predictive Ability (CPA) in the context of electricity price forecasting.

Additionally, the module provides a function plot_multivariate_GW_test that plots the results of pairwise comparisonsi between multiple models.

GW test

The Giacomini-White (GW) test can be seen as a generalization of the Diebold-Mariano test that measures the CPA instead of the Unconditional Predictive Ability. The test, like the DM variant, measures the statistical significance of the differences of two models forecasts. It is an asymptotic \(\chi^2\)-test of the null hypothesis \(\mathrm{H}_0:\phi=0\) in the regression:

\[\begin{equation}
\Delta^{\mathrm{A, B}}_d = \phi'\mathbb{X}_{d-1} + \varepsilon_d,
\end{equation}\]

where \(\mathbb{X}_{d-1}\) contains elements from the information set on day \(d-1\), i.e., a constant and lags of \(\Delta^{\mathrm{A, B}}_d\). The loss differential is obtained like in the DM test:

\[\begin{equation}
\Delta^{\mathrm{A, B}}_{k} = L(\varepsilon^\mathrm{A}_{k}) - L(\varepsilon^\mathrm{B}_{k})
\end{equation}\]

where \(\varepsilon^\mathrm{Z}_{k}=p_{k}-\hat{p}_{k}\) is the prediction error of model Z for time step
\(k\) and \(L(\cdot)\) is the loss function. For point forecasts, we usually take \(L(\varepsilon^\mathrm{Z}_{k})=|\varepsilon^\mathrm{Z}_{k}|^p\) with \(p=1\) or \(2\), which corresponds to the absolute and squared losses.

This module implements the one-sided version of the GW test using the a function GW function. Given the forecast of a model A and the forecast of a model B, the test evaluates the null hypothesis \(H_0\) of the CPA of the loss differential of model A being higher or equal than that of model B. Hence, rejecting the null \(H_0\) means that the forecasts of model B are significantly more accurate than those of model A.

The module provides the two standard versions of the test in electricity price forecasting: an univariate and a multivariate version. The univariate version of the test has the advantage of providing a deeper analysis as it indicates which forecast is significantly better for which hour of the days. The multivariate version grants a better representation of the results as it summarizes the comparison in a single p-value.

	
epftoolbox.evaluation.GW(p_real, p_pred_1, p_pred_2, norm=1, version='univariate')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_gw.py#L13]

	Perform the one-sided GW test

The test compares the Conditional Predictive Accuracy of two forecasts
p_pred_1 and p_pred_2. The null H0 is that the CPA of errors p_pred_1
is higher (better) or equal to the errors of p_pred_2 vs. the alternative H1
that the CPA of p_pred_2 is higher. Rejecting H0 means that the forecasts
p_pred_2 are significantly more accurate than forecasts p_pred_1.
(Note that this is an informal definition. For a formal one we refer
here [https://epftoolbox.readthedocs.io/en/latest/modules/cite.html])

	Parameters

	
	p_real (numpy.ndarray) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the real market
prices

	p_pred_1 (TYPE) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the first forecast

	p_pred_2 (TYPE) – Array of shape \((n_\mathrm{days}, n_\mathrm{prices/day})\) representing the second forecast

	norm (int, optional) – Norm used to compute the loss differential series. At the moment, this value must either
be 1 (for the norm-1) or 2 (for the norm-2).

	version (str, optional) – Version of the test as defined in
here [https://epftoolbox.readthedocs.io/en/latest/modules/cite.html]. It can have two values:
'univariate' or 'multivariate'

	Returns

	The p-value after performing the test. It is a float in the case of the multivariate test
and a numpy array with a p-value per hour for the univariate test

	Return type

	float, numpy.ndarray

Example

>>> from epftoolbox.evaluation import GW
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Generating forecasts of multiple models
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecasts = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Deleting the real price field as it the actual real price and not a forecast
>>> del forecasts['Real price']
>>>
>>> # Transforming indices to datetime format
>>> forecasts.index = pd.to_datetime(forecasts.index)
>>>
>>> # Extracting the real prices from the market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecasts.index[0],
... end_test_date=forecasts.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Testing the univariate GW version on an ensemble of DNN models versus an ensemble
>>> # of LEAR models
>>> GW(p_real=real_price.values.reshape(-1, 24),
... p_pred_1=forecasts.loc[:, 'LEAR Ensemble'].values.reshape(-1, 24),
... p_pred_2=forecasts.loc[:, 'DNN Ensemble'].values.reshape(-1, 24),
... norm=1, version='univariate')
array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
 1.00000000e+00, 1.00000000e+00, 1.03217562e-01, 2.63206239e-03,
 5.23325510e-03, 5.90845414e-04, 6.55116487e-03, 9.85034605e-03,
 3.34250412e-02, 1.80798591e-02, 2.74761848e-02, 3.19436776e-02,
 8.39512169e-04, 2.11907847e-01, 5.79718600e-02, 8.73956638e-03,
 4.30521699e-01, 2.67395381e-01, 6.33448562e-01, 1.99826993e-01])
>>>
>>> # Testing the multivariate GW version
>>> GW(p_real=real_price.values.reshape(-1, 24),
... p_pred_1=forecasts.loc[:, 'LEAR Ensemble'].values.reshape(-1, 24),
... p_pred_2=forecasts.loc[:, 'DNN Ensemble'].values.reshape(-1, 24),
... norm=1, version='multivariate')
0.017598166936843906

plot_multivariate_GW_test

The plot_multivariate_GW_test provides an easy-to-use interface to plot in a heat map with a chessboard shape the results of using the DM test to compare the forecasts of multiple models. An example of the heat map is provided below in the function example.

	
epftoolbox.evaluation.plot_multivariate_GW_test(real_price, forecasts, norm=1, title='GW test', savefig=False, path='')[source] [https://github.com/jeslago/epftoolbox/blob/master/epftoolbox/evaluation/_gw.py#L159]

	Plotting the results of comparing forecasts using the multivariate GW test.

The resulting plot is a heat map in a chessboard shape. It represents the p-value
of the null hypothesis of the forecast in the y-axis being significantly more
accurate than the forecast in the x-axis. In other words, p-values close to 0
represent cases where the forecast in the x-axis is significantly more accurate
than the forecast in the y-axis.

	Parameters

	
	real_price (pandas.DataFrame) – Dataframe that contains the real prices

	forecasts (TYPE) – Dataframe that contains the forecasts of different models. The column names are the
forecast/model names. The number of datapoints should equal the number of datapoints
in real_price.

	norm (int, optional) – Norm used to compute the loss differential series. At the moment, this value must either
be 1 (for the norm-1) or 2 (for the norm-2).

	title (str, optional) – Title of the generated plot

	savefig (bool, optional) – Boolean that selects whether the figure should be saved in the current folder

	path (str, optional) – Path to save the figure. Only necessary when savefig=True

Example

>>> from epftoolbox.evaluation import GW, plot_multivariate_GW_test
>>> from epftoolbox.data import read_data
>>> import pandas as pd
>>>
>>> # Generating forecasts of multiple models
>>>
>>> # Download available forecast of the NP market available in the library repository
>>> # These forecasts accompany the original paper
>>> forecasts = pd.read_csv('https://raw.githubusercontent.com/jeslago/epftoolbox/master/' +
... 'forecasts/Forecasts_NP_DNN_LEAR_ensembles.csv', index_col=0)
>>>
>>> # Deleting the real price field as it the actual real price and not a forecast
>>> del forecasts['Real price']
>>>
>>> # Transforming indices to datetime format
>>> forecasts.index = pd.to_datetime(forecasts.index)
>>>
>>> # Extracting the real prices from the market
>>> _, df_test = read_data(path='.', dataset='NP', begin_test_date=forecasts.index[0],
... end_test_date=forecasts.index[-1])
Test datasets: 2016-12-27 00:00:00 - 2018-12-24 23:00:00
>>>
>>> real_price = df_test.loc[:, ['Price']]
>>>
>>> # Generating a plot to compare the models using the multivariate GW test
>>> plot_multivariate_GW_test(real_price=real_price, forecasts=forecasts)

[image: ../../_images/GW.png]

Examples

The library contains several examples to get the users familiar with the syntax and capabilities of the
library. At the moment, the available examples are for using the two state-of-the-art forecasting models: the LEAR and the DNN models.

For each of the models, there is a simplified example to perform daily recalibration and forecasting,
and a more complex, yet flexible, example to perform the same thing. For the DNN, there is also an example
for hyperparameter optimization.

	LEAR Examples
	1. Easy recalibration

	2. Flexible recalibration

	DNN Examples
	1. Hyperparameter optimization

	2. Easy recalibration

	3. Flexible recalibration

LEAR Examples

This section contains two examples on how to use the LEAR model. The first example provides an easy-to-use interface for evaluating the LEAR model in a given test dataset. The second example provides more flexible interface to perform recalibration and daily forecasting with a LEAR model.

1. Easy recalibration

The first example provides an easy-to-use interface for evaluating the LEAR model in a given test dataset. While this example lacks flexibility, it grants an simple interface to evalute LEAR models
in different datasets.

"""
Simplified example for using the LEAR model for forecasting prices with daily recalibration
"""

Author: Jesus Lago

License: AGPL-3.0 License

from epftoolbox.models import evaluate_lear_in_test_dataset
import os

Market under study. If it not one of the standard ones, the file name
has to be provided, where the file has to be a csv file
dataset = 'PJM'

Number of years (a year is 364 days) in the test dataset.
years_test = 2

Number of days used in the training dataset for recalibration
calibration_window = 364 * 4

Optional parameters for selecting the test dataset, if either of them is not provided,
the test dataset is built using the years_test parameter. They should either be one of
the date formats existing in python or a string with the following format
"%d/%m/%Y %H:%M"
begin_test_date = None
end_test_date = None

path_datasets_folder = os.path.join('.', 'datasets')
path_recalibration_folder = os.path.join('.', 'experimental_files')

evaluate_lear_in_test_dataset(path_recalibration_folder=path_recalibration_folder,
 path_datasets_folder=path_datasets_folder, dataset=dataset, years_test=years_test,
 calibration_window=calibration_window, begin_test_date=begin_test_date,
 end_test_date=end_test_date)

2. Flexible recalibration

The second example provides more flexible interface to perform recalibration and daily
forecasting with a LEAR model. While this example is more complex, it grants a flexible interface to use
the LEAR model for real-time application.

"""
Example for using the LEAR model for forecasting prices with daily recalibration
"""

Author: Jesus Lago

License: AGPL-3.0 License

import pandas as pd
import numpy as np
import argparse
import os

from epftoolbox.data import read_data
from epftoolbox.evaluation import MAE, sMAPE
from epftoolbox.models import LEAR

------------------------------ EXTERNAL PARAMETERS ------------------------------------#

parser = argparse.ArgumentParser()

parser.add_argument("--dataset", type=str, default='PJM',
 help='Market under study. If it not one of the standard ones, the file name' +
 'has to be provided, where the file has to be a csv file')

parser.add_argument("--years_test", type=int, default=2,
 help='Number of years (a year is 364 days) in the test dataset. Used if ' +
 ' begin_test_date and end_test_date are not provided.')

parser.add_argument("--calibration_window", type=int, default=4 * 364,
 help='Number of days used in the training dataset for recalibration')

parser.add_argument("--begin_test_date", type=str, default=None,
 help='Optional parameter to select the test dataset. Used in combination with ' +
 'end_test_date. If either of them is not provided, test dataset is built ' +
 'using the years_test parameter. It should either be a string with the ' +
 ' following format d/m/Y H:M')

parser.add_argument("--end_test_date", type=str, default=None,
 help='Optional parameter to select the test dataset. Used in combination with ' +
 'begin_test_date. If either of them is not provided, test dataset is built ' +
 'using the years_test parameter. It should either be a string with the ' +
 ' following format d/m/Y H:M')

args = parser.parse_args()

dataset = args.dataset
years_test = args.years_test
calibration_window = args.calibration_window
begin_test_date = args.begin_test_date
end_test_date = args.end_test_date

path_datasets_folder = os.path.join('.', 'datasets')
path_recalibration_folder = os.path.join('.', 'experimental_files')

Defining train and testing data
df_train, df_test = read_data(dataset=dataset, years_test=years_test, path=path_datasets_folder,
 begin_test_date=begin_test_date, end_test_date=end_test_date)

Defining unique name to save the forecast
forecast_file_name = 'fc_nl' + '_dat' + str(dataset) + '_YT' + str(years_test) + \
 '_CW' + str(calibration_window) + '.csv'

forecast_file_path = os.path.join(path_recalibration_folder, forecast_file_name)

Defining empty forecast array and the real values to be predicted in a more friendly format
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
real_values = df_test.loc[:, ['Price']].values.reshape(-1, 24)
real_values = pd.DataFrame(real_values, index=forecast.index, columns=forecast.columns)

forecast_dates = forecast.index

model = LEAR(calibration_window=calibration_window)

For loop over the recalibration dates
for date in forecast_dates:

 # For simulation purposes, we assume that the available data is
 # the data up to current date where the prices of current date are not known
 data_available = pd.concat([df_train, df_test.loc[:date + pd.Timedelta(hours=23), :]], axis=0)

 # We set the real prices for current date to NaN in the dataframe of available data
 data_available.loc[date:date + pd.Timedelta(hours=23), 'Price'] = np.NaN

 # Recalibrating the model with the most up-to-date available data and making a prediction
 # for the next day
 Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date,
 calibration_window=calibration_window)
 # Saving the current prediction
 forecast.loc[date, :] = Yp

 # Computing metrics up-to-current-date
 mae = np.mean(MAE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values))
 smape = np.mean(sMAPE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values)) * 100

 # Pringint information
 print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format(str(date)[:10], smape, mae))

 # Saving forecast
 forecast.to_csv(forecast_file_path)

DNN Examples

This section contains three examples on how to use the DNN model. The first example introduces the hyperparameter optimization and feature selection
procedure of the DNN model. The second example provides an easy-to-use interface for evaluating the DNN model in a given test dataset. The third example provides more flexible interface to perform recalibration and daily forecasting with a DNN model.

1. Hyperparameter optimization

The first example introduces the hyperparameter optimization and feature selection
procedure of the DNN model.

"""
Example for optimizing the hyperparameter and features of the DNN model
"""

Author: Jesus Lago

License: AGPL-3.0 License

from epftoolbox.models import hyperparameter_optimizer

Number of layers in DNN
nlayers = 2

Market under study. If it not one of the standard ones, the file name
has to be provided, where the file has to be a csv file
dataset = 'NP'

Number of years (a year is 364 days) in the test dataset.
years_test = 2

Optional parameters for selecting the test dataset, if either of them is not provided,
the test dataset is built using the years_test parameter. They should either be one of
the date formats existing in python or a string with the following format
"%d/%m/%Y %H:%M"
begin_test_date = None
end_test_date = None

Boolean that selects whether the validation and training datasets are shuffled
shuffle_train = 1

Boolean that selects whether a data augmentation technique for DNNs is used
data_augmentation = 0

Boolean that selects whether we start a new hyperparameter optimization or we restart an existing one
new_hyperopt = 1

Number of years used in the training dataset for recalibration
calibration_window = 4

Unique identifier to read the trials file of hyperparameter optimization
experiment_id = 1

Number of iterations for hyperparameter optimization
max_evals = 1500

path_datasets_folder = "./datasets/"
path_hyperparameters_folder = "./experimental_files/"

Check documentation of the hyperparameter_optimizer for each of the function parameters
In this example, we optimize a model for the PJM market.
We consider two directories, one for storing the datasets and the other one for the experimental files.
We start a hyperparameter optimization from scratch. We employ 1500 iterations in hyperopt,
2 years of test data, a DNN with 2 hidden layers, a calibration window of 4 years,
we avoid data augmentation, and we provide an experiment_id equal to 1
hyperparameter_optimizer(path_datasets_folder=path_datasets_folder,
 path_hyperparameters_folder=path_hyperparameters_folder,
 new_hyperopt=new_hyperopt, max_evals=max_evals, nlayers=nlayers, dataset=dataset,
 years_test=years_test, calibration_window=calibration_window,
 shuffle_train=shuffle_train, data_augmentation=0, experiment_id=experiment_id,
 begin_test_date=begin_test_date, end_test_date=end_test_date)

2. Easy recalibration

The second example provides an easy-to-use interface for evaluating the LEAR model in a given test dataset. While this example lacks flexibility, it grants an simple interface to evalute LEAR models
in different datasets. It is important to note that this example assumes that a hyperparameter optimization
procedure has already been performed.

"""
Simplified example for using the DNN model for forecasting prices with daily recalibration
"""

Author: Jesus Lago

License: AGPL-3.0 License

from epftoolbox.models import evaluate_dnn_in_test_dataset
import os

Number of layers in DNN
nlayers = 2

Market under study. If it not one of the standard ones, the file name
has to be provided, where the file has to be a csv file
dataset = 'PJM'

Number of years (a year is 364 days) in the test dataset.
years_test = 2

Boolean that selects whether the validation and training datasets were shuffled when
performing the hyperparameter optimization. Note that it does not select whether
shuffling is used for recalibration as for recalibration the validation and the
training datasets are always shuffled.
shuffle_train = 1

Boolean that selects whether a data augmentation technique for DNNs is used
data_augmentation = 0

Boolean that selects whether we start a new recalibration or we restart an existing one
new_recalibration = 1

Number of years used in the training dataset for recalibration
calibration_window = 4

Unique identifier to read the trials file of hyperparameter optimization
experiment_id = 1

Optional parameters for selecting the test dataset, if either of them is not provided,
the test dataset is built using the years_test parameter. They should either be one of
the date formats existing in python or a string with the following format
"%d/%m/%Y %H:%M"
begin_test_date = '27/12/2016'
end_test_date = '01/03/2017'

Set up the paths for saving data (this are the defaults for the library)
path_datasets_folder = os.path.join('.', 'datasets')
path_recalibration_folder = os.path.join('.', 'experimental_files')
path_hyperparameter_folder = os.path.join('.', 'experimental_files')

evaluate_dnn_in_test_dataset(experiment_id, path_hyperparameter_folder=path_hyperparameter_folder,
 path_datasets_folder=path_datasets_folder, shuffle_train=shuffle_train,
 path_recalibration_folder=path_recalibration_folder,
 nlayers=nlayers, dataset=dataset, years_test=years_test,
 data_augmentation=data_augmentation, calibration_window=calibration_window,
 new_recalibration=new_recalibration, begin_test_date=begin_test_date,
 end_test_date=end_test_date)

3. Flexible recalibration

The third example provides more flexible interface to perform recalibration and daily
forecasting with a LEAR model. While this example is more complex, it grants a flexible interface to use
the LEAR model for real-time application. It is important to note that this example assumes that a hyperparameter optimization procedure has already been performed.

"""
Example for using the DNN model for forecasting prices with daily recalibration
"""

Author: Jesus Lago

License: AGPL-3.0 License

import pandas as pd
import numpy as np
import argparse
import os

from epftoolbox.data import read_data
from epftoolbox.evaluation import MAE, sMAPE
from epftoolbox.models import DNN

------------------------------ EXTERNAL PARAMETERS ------------------------------------#

parser = argparse.ArgumentParser()

parser.add_argument("--nlayers", help="Number of layers in DNN", type=int, default=2)

parser.add_argument("--dataset", type=str, default='PJM',
 help='Market under study. If it not one of the standard ones, the file name' +
 'has to be provided, where the file has to be a csv file')

parser.add_argument("--years_test", type=int, default=2,
 help='Number of years (a year is 364 days) in the test dataset. Used if ' +
 ' begin_test_date and end_test_date are not provided.')

parser.add_argument("--shuffle_train", type=int, default=1,
 help='Boolean that selects whether the validation and training datasets were' +
 ' shuffled when performing the hyperparameter optimization.')

parser.add_argument("--data_augmentation", type=int, default=0,
 help='Boolean that selects whether a data augmentation technique for DNNs is used')

parser.add_argument("--new_recalibration", type=int, default=1,
 help='Boolean that selects whether we start a new recalibration or we restart an' +
 ' existing one')

parser.add_argument("--calibration_window", type=int, default=4,
 help='Number of years used in the training dataset for recalibration')

parser.add_argument("--experiment_id", type=int, default=1,
 help='Unique identifier to read the trials file of hyperparameter optimization')

parser.add_argument("--begin_test_date", type=str, default=None,
 help='Optional parameter to select the test dataset. Used in combination with ' +
 'end_test_date. If either of them is not provided, test dataset is built ' +
 'using the years_test parameter. It should either be a string with the ' +
 ' following format d/m/Y H:M')

parser.add_argument("--end_test_date", type=str, default=None,
 help='Optional parameter to select the test dataset. Used in combination with ' +
 'begin_test_date. If either of them is not provided, test dataset is built ' +
 'using the years_test parameter. It should either be a string with the ' +
 ' following format d/m/Y H:M')

args = parser.parse_args()

nlayers = args.nlayers
dataset = args.dataset
years_test = args.years_test
shuffle_train = args.shuffle_train
data_augmentation = args.data_augmentation
new_recalibration = args.new_recalibration
calibration_window = args.calibration_window
experiment_id = args.experiment_id
begin_test_date = args.begin_test_date
end_test_date = args.end_test_date

path_datasets_folder = os.path.join('.', 'datasets')
path_recalibration_folder = os.path.join('.', 'experimental_files')
path_hyperparameter_folder = os.path.join('.', 'experimental_files')

Defining train and testing data
df_train, df_test = read_data(dataset=dataset, years_test=years_test, path=path_datasets_folder,
 begin_test_date=begin_test_date, end_test_date=end_test_date)

Defining unique name to save the forecast
forecast_file_name = 'fc_nl' + str(nlayers) + '_dat' + str(dataset) + \
 '_YT' + str(years_test) + '_SF' + str(shuffle_train) + \
 '_DA' * data_augmentation + '_CW' + str(calibration_window) + \
 '_' + str(experiment_id) + '.csv'

forecast_file_path = os.path.join(path_recalibration_folder, forecast_file_name)

Defining empty forecast array and the real values to be predicted in a more friendly format
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
real_values = df_test.loc[:, ['Price']].values.reshape(-1, 24)
real_values = pd.DataFrame(real_values, index=forecast.index, columns=forecast.columns)

If we are not starting a new recalibration but re-starting an old one, we import the
existing files and print metrics
if not new_recalibration:
 # Import existinf forecasting file
 forecast = pd.read_csv(forecast_file_path, index_col=0)
 forecast.index = pd.to_datetime(forecast.index)

 # Reading dates to still be forecasted by checking NaN values
 forecast_dates = forecast[forecast.isna().any(axis=1)].index

 # If all the dates to be forecasted have already been forecast, we print information
 # and exit the script
 if len(forecast_dates) == 0:

 mae = np.mean(MAE(forecast.values.squeeze(), real_values.values))
 smape = np.mean(sMAPE(forecast.values.squeeze(), real_values.values)) * 100
 print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format('Final metrics', smape, mae))

else:
 forecast_dates = forecast.index

model = DNN(
 experiment_id=experiment_id, path_hyperparameter_folder=path_hyperparameter_folder, nlayers=nlayers,
 dataset=dataset, years_test=years_test, shuffle_train=shuffle_train, data_augmentation=data_augmentation,
 calibration_window=calibration_window)

For loop over the recalibration dates
for date in forecast_dates:

 # For simulation purposes, we assume that the available data is
 # the data up to current date where the prices of current date are not known
 data_available = pd.concat([df_train, df_test.loc[:date + pd.Timedelta(hours=23), :]], axis=0)

 # We extract real prices for current date and set them to NaN in the dataframe of available data
 data_available.loc[date:date + pd.Timedelta(hours=23), 'Price'] = np.NaN

 # Recalibrating the model with the most up-to-date available data and making a prediction
 # for the next day
 Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date)

 # Saving the current prediction
 forecast.loc[date, :] = Yp

 # Computing metrics up-to-current-date
 mae = np.mean(MAE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values))
 smape = np.mean(sMAPE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values)) * 100

 # Pringint information
 print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format(str(date)[:10], smape, mae))

 # Saving forecast
 forecast.to_csv(forecast_file_path)

Citation

If you use the epftoolbox in a scientific publication, we would appreciate citations to the following paper:

	Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. “Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark”. Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

Bibtex entry:

@article{epftoolbox,

title = {Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark},
journal = {Applied Energy},
volume = {293},
pages = {116983},
year = {2021},
doi = {https://doi.org/10.1016/j.apenergy.2021.116983},
author = {Jesus Lago and Grzegorz Marcjasz and Bart {De Schutter} and Rafał Weron}

}

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T

C

 	
 	clear_session() (epftoolbox.models.DNNModel method)

D

 	
 	DataScaler (class in epftoolbox.data)

 	DM() (in module epftoolbox.evaluation)

 	
 	DNN (class in epftoolbox.models)

 	DNNModel (class in epftoolbox.models)

E

 	
 	evaluate_dnn_in_test_dataset() (in module epftoolbox.models)

 	
 	evaluate_lear_in_test_dataset() (in module epftoolbox.models)

F

 	
 	fit() (epftoolbox.models.DNNModel method)

 	
 	fit_transform() (epftoolbox.data.DataScaler method)

G

 	
 	GW() (in module epftoolbox.evaluation)

H

 	
 	hyperparameter_optimizer() (in module epftoolbox.models)

I

 	
 	inverse_transform() (epftoolbox.data.DataScaler method)

L

 	
 	LEAR (class in epftoolbox.models)

M

 	
 	MAE() (in module epftoolbox.evaluation)

 	
 	MAPE() (in module epftoolbox.evaluation)

 	MASE() (in module epftoolbox.evaluation)

N

 	
 	naive_forecast() (in module epftoolbox.evaluation)

P

 	
 	plot_multivariate_DM_test() (in module epftoolbox.evaluation)

 	plot_multivariate_GW_test() (in module epftoolbox.evaluation)

 	
 	predict() (epftoolbox.models.DNN method)

 	(epftoolbox.models.DNNModel method)

 	(epftoolbox.models.LEAR method)

R

 	
 	read_data() (in module epftoolbox.data)

 	recalibrate() (epftoolbox.models.DNN method)

 	(epftoolbox.models.LEAR method)

 	recalibrate_and_forecast_next_day() (epftoolbox.models.DNN method)

 	(epftoolbox.models.LEAR method)

 	
 	recalibrate_predict() (epftoolbox.models.DNN method)

 	(epftoolbox.models.LEAR method)

 	rMAE() (in module epftoolbox.evaluation)

 	RMSE() (in module epftoolbox.evaluation)

S

 	
 	scaling() (in module epftoolbox.data)

 	
 	sMAPE() (in module epftoolbox.evaluation)

T

 	
 	transform() (epftoolbox.data.DataScaler method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to epftoolbox’s documentation!

 		
 Getting started

 		
 Installation

 		
 Functionality

 		
 Using the library

 		
 Data management

 		
 Dataset extraction

 		
 Data wrangling

 		
 Forecasting models

 		
 The LEAR model

 		
 LEAR

 		
 evaluate_lear_in_test_dataset

 		
 The DNN model

 		
 DNNModel

 		
 hyperparameter_optimizer

 		
 DNN

 		
 evaluate_dnn_in_test_dataset

 		
 Model evaluation

 		
 Accuracy Metrics

 		
 MAE

 		
 RMSE

 		
 MAPE

 		
 sMAPE

 		
 MASE

 		
 rMAE

 		
 Naive forecast

 		
 Statistical testing

 		
 Diebold-Mariano test

 		
 Giacomini-White test

 		
 Examples

 		
 LEAR Examples

 		
 1. Easy recalibration

 		
 2. Flexible recalibration

 		
 DNN Examples

 		
 1. Hyperparameter optimization

 		
 2. Easy recalibration

 		
 3. Flexible recalibration

 		
 Citation

_images/GW.png
GW test

- 0.10
DNN 1
DNN 2
- 0.08
DNN 3
DNN 4
- 0.06
DNN Ensemble
LEAR 56
- 0.04
LEAR 84
LEAR 1092
0.02
LEAR 1456
LEAR Ensemble
0.00

DNN 1
DNN 2
DNN 3
DNN 4
LEAR 56
LEAR 84
LEAR 1092
LEAR 1456

DNN Ensemble
LEAR Ensemble

_static/ajax-loader.gif

_images/DM.png
DNN 1
DNN 2
DNN 3
DNN 4
DNN Ensemble
Lasso 56
Lasso 84
Lasso 1092
Lasso 1456

Lasso Ensemble

Lasso 1092
Lasso 1456

Kl
£
3
&
z
H
a

Lasso Ensemble

0.10

0.08

0.06

0.04

0.02

0.00

